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194 C.K. Lee, S.N. Fallou and C. C. Mez

We examine theoretically the mechanics of intensive pumping of groundwater from
a layered soil. The soil system is assumed to consist of three horizontal layers where
a very soft and highly impervious aquitard is sandwiched by two hard and highly
porous aquifers. Water is pumped from the bottom aquifer through a vertical well.
Attention is focused on the case where the pumping rate is so strong that the ground
subsidence, contributed mainly by the soft aquitard, is comparable with the typical
layer thickness. By a perturbation theory and the use of lagrangian coordinates, we
deduce an approximation which incorporates the quasi-three-dimensional scheme of
Hantush & Jacob for the pore pressure, and the one-dimensional finite strain theory
of Gibson et al. for the soil consolidation. Unlike the approximations prevailing in
hydrological literature, it is shown in particular that the pore pressure is nonlinearly
coupled to the soil deformation and that the total stress is not necessarily uniform
in depth. Hysteretic subsidence and the associated variations of soil parameters due
to various forms of cyclic pumping or recharging are discussed.

1. Introduction

Groundwater is frequently pumped from confined aquifers of a soil stratum
consisting of alternating layers of highly porous sand (aquifers) and highly
impervious clay (aquitards). Many existing works are based on Biot’s linearized
equations of poroelasticity. Since fully three-dimensional problems coupling several
soil layers are prohibitively complex, it is often assumed that the total stress, which
is the sum of the effective soil stress and the pore pressure, does not vary with depth
in a soil layer (see Verruijt 1969). As a consequence, the soil dilation rate is then
proportional to the pore pressure. This leads to a linear diffusion equation for the
incremental pore pressure (or drawdown) which is decoupled from the soil
deformation,

kV2s = (ps/D) s/ ok, (1.1)

where s = drawdown, k = permeability, and D = elastic modulus of matrix.
However, this assumption is known to hold only if the consolidating layer is
sufficiently thin and hard (De Josselin de Jong 1963), as can be inferred from the one-
dimensional consolidation theory of a soft and thick clay layer by Gibson ef al. (1967)
and by Gibson et al. (1981).

In some theories of multilayer subsidence, soil deformation is attributed mainly to
the aquifers (see Verruijt 1969 ; Bredehoeft & Pinder 1970 ; Corapcioglu & Brutsaert
1977; Bear & Corapcioglu 1981a, b; Corapcioglu & Bear 1983). The aquitards are
treated as relatively thin but firm lens across which there is a pressure drop.
However, it is known that aquitards themselves may also play an important role in
subsidence because of the relatively large compressibility of some clays (Poland &
Davis 1969; Gambolati & Freeze 1973; Gambolati et al. 1974; Helm 1975, 1976;
Narasimhan & Witherspoon 1977, 1978). In a pioneering study of pumping from a
single well, Hantush & Jacob (1955a, b; Hantush 1960) introduced a model which
accounts for compaction in the aquitards for a soil system with three alternating
sand and clay layers, with water pumped out of the bottom (artesian) aquifer. From
the simple case of steady flow in two layers with very different permeabilities
(Hantush & Jacob 1954, 1955b; Bear 1972, p. 157), they invoked the following
approximation which captures much of the essential physics. First, the flow in an
aquifer should be nearly horizontal because of the relatively high permeability, and
its depth-average is governed by

Phil. Trans. R. Soc. Lond. A (1992)
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Subsidence of a soil stratum 195
0% 0*\_ [os]* _ pgbos
b(@'l‘a—?f)z?'f-[a]_—w—éz, (12)

where b and 3 are the aquifer thickness and the depth-averaged aquifer drawdown
respectively and D is the constrained modulus, and

o]t _os
oz|_ e
is proportional to the net flux into the aquifer from the aquitard immediately above
and below. Second, the flow in the highly impermeable aquitard must be nearly

vertical, hence 0s/0z > 0s/0x, ds/dy so that (1.1) in the upper (+) aquitard is
approximately governed by a vertical diffusion equation

_ O
. Oz

_0s, 0Os_
% & (1.3)

o, _ _pg s,
022 k,D, Ot (14)

The lower aquitard is governed by a similar equation. Thus the original problem in
three dimensions becomes one dimensional (vertical) in the aquitard and two
dimensional (horizontal) in the aquifer. This quasi-three-dimensional hydrological
approximation significantly eases the computational task and has been the basis of
many later extensions (Herrera & Figueroa 1969 ; Neuman & Witherspoon 1969a, b;
Gambolati et al. 1986; see Fallou et al. (1991) for an extensive list of references). It
has been shown for a numerical example to be highly accurate as long as the
permeability contrast is sufficiently great (Javandel & Witherspoon 1969). After
obtaining the three-dimensional pore pressure, the soil deformation is taken to be one
dimensional. The assumption of constant total stress then gives the effective stress
from the local pore pressure. A linear or nonlinear constitutive law between the
effective stress and strain (or void ratio) is introduced at this stage to obtain the
ground subsidence. Examples of this scheme include Gambolati & Freeze (1973),
Gambolati et al. (1974) for Venice, Italy. To simulate the recorded subsidence of
Pixley, California, Helm (1975, 1976) and Narasimhan & Witherspoon (1977, 1978)
used a strictly one-dimensional model with prescribed load on the ground surface.
Hysteretic soil behaviour under cyclic or intermittent loading was examined. The
effects of partial saturation were further included in Narasimhan & Witherspoon.
For the three-dimensional problem of pumping from the bottom aquifer of a three-
layered system, Rudolph & Frind (1991) considered the aquitard to be highly
compressible. With the hydrological approximation corresponding to (1.2) to (1.4),
they introduced nonlinear empirical relations between k,D and the soil effective
stress and void ratio which are in turn related by an empirical law. However, they
formulated the mathematical problem for the aquitard in a fixed domain therefore
assumed in effect that the depth of the aquitard is unchanged during consolidation.
This is not fully consistent with the assumption of high compressibility which implies
in general that the position of the upper boundary of the aquitard is unknown a
priori. In Mexico City where the soil consists of many clay strata of a few to few tens
of metres thick, alternating with sand and gravel layers, it is known that the total
subsidence since 1880 is as high as 7 m (Bolt et al. 1977; Zeevaert 1983).

Towards a more complete theory for a soil system with a soft and thick aquitard,
the following issues warrant re-examination. (i) Is the total stress in the aquitard
always constant in depth? (ii) How is the finite strain of the soil matrix coupled

Phil. Trans. R. Soc. Lond. A (1992)
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with the drawdown ? (iii) How does the water table evolve if the unpumped aquifer
on the top is unconfined? (iv) To what extent is the quasi-three-dimensional
approximation of Hantush & Jacob valid in the nonlinearly coupled problem ?

To provide partial answer to (i) and (iii) above, Fallou et al. (1991) have recently
applied a perturbation analysis to the classical problem of pumping from a single well
in a three-layered system, with the top layer unconfined. Based on Biot’s
poroelasticity theory for weak disturbances due to pumping, they concluded
analytically that while the quasi-three-dimensional picture is indeed the first
approximation in a power series expansion of the small ratio of aquitard-to-aquifer
permeabilities, self weight can nevertheless cause the total stress to be non-uniform
in a thick soft aquitard.

For strictly one-dimensional consolidation, large deformation can be most
elegantly dealt with by a lagrangian approach introduced by Cooper (1966, with
revisions by Gambolati (1973a, b)), Gibson et al. (1967) and Smiles & Rosenthal
(1968). This approach allows one to follow the finite displacement of the soil matrix
in the most direct manner, but it needs to be extended for the general case of three
dimensions.

In this paper we use the classical example of pumping from an isolated region in
a soil system consisting of three horizontal layers of comparable thickness, with an
aquitard sandwiched between two aquifers. All layers are infinite in radial extent.
Lagrangian coordinates will be used. Rather than invoking the hydrological
approximation of Hantush & Jacob heuristically, we shall extend our perturbation
theory for small permeability ratio (aquitard to aquifer), to deduce a similar
simplification for the flow. (We are following a philosophy well known in the modern
theory of shallow water waves, in which Airy’s original heuristic approximation can
be derived as the leading-order approximation in a formal perturbation analysis,
which facilitates extentions to higher orders.) We also show that the one-dimensional
lagrangian theory for the soil matrix is still valid to certain degree of accuracy. To
facilitate the explanation of our analysis, we do not include all physical factors that
may be present in some circumstances, but retain those essential for our argument.
Thus the compressibility of water and partial saturation are neglected. The aquifers
are assumed to be very much more rigid than the aquitard. The sharp phreatic
surface will be found as a part of the nonlinear solution. In addition to ground
subsidence, we also examine the variations of the soil parameters as functions of the
pumping rate. Several types of steady and transient pumping schedules are
discussed.

In §2, after listing the governing equations for quasi-static states, constitutive
assumptions are introduced. The well-known hysteretic relation between com-
pression and the void ratio will be schematized by one involving just two coefficients ;
modification for any particular soil should be minor. To provide a mathematical
basis for perturbation analysis, we first estimate the order of magnitudes of all
physical quantities in this problem. In this process the linear Biot’s theory is used
only as a guide but for no other purposes. The governing equations are then
normalized by these estimated scales, and dimensionless coefficients in powers of the
small ratio of depth-averaged permeabilities

8 =ly/k, <1 (1.5)

appear with each term to display its relative importance in the equation. Physically
the small parameter ¢ is also associated with the shallowness of layers. A perturbation

Phil. Trans. R. Soc. Lond. A (1992)
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analysis then ensues. In §4 transformation rules from eulerian to lagrangian
coordinates are discussed. In §5 it is shown that the lagrangian equation of Gibson
et al. remains a good representation for the effective stress in the soft aquitard. In §6,
the flow in the artesian aquifer is shown to be horizontal to the leading order 0(8°),
while the soil deformation is insignificant. Consideration of O(d) leads to a boundary
condition for the drawdown in the aquitard above. The mechanics in the phreatic
aquifer involves significant displacement of the water table. Perturbation analysis in
§7 based on lagrangian coordinates gives another boundary condition on the upper
interface for the aquitard drawdown. In this way the mathematical problem for three
layers is reduced to one for the aquitard alone. The aquitard equation is then
rewritten for the aquitard drawdown in §8. Also formulas for other physical variables
are summarized in dimensionless form in §9. For the purpose of checking the limiting
case of hard aquitards is considered in §10 and it is shown that the boundary value
problem for the aquitard drawdown reduces to the one by Hantush (1960) as the
storage coefficient of the aquitard becomes negligible. After outlining the numerical
scheme in §11, numerical results for steady and transient pumping are discussed in
§12. The Mandel-Cryer effect is pointed out in which the water table near the well
rises during the initial stage of pumping. Intermittent or cyclic pumping and
recharging are examined for hysteretic responses in the vertical displacements of
both the ground surface and the water table. Remarks for future extensions are made
in §13.

2. Governing equations for deformable porous media

In this section we present the governing equations which are applicable in all soil
layers. Subscripts for distinguishing the layers will not be introduced until later.

(@) Conservation equations

Let n be the porosity of the soil matrix, p, and v, the density and velocity
respectively of the pore water. Conservation of water mass requires that

mpy/0t+V-(np,v,)=0. (2.1)

Similarly, if p; and vy denote the density and velocity of the solid matrix,
conservation of solid mass requires that

0(1—mn)py/0t+V: [(1—n)psv] = 0. (2.2)

In this paper, both p, and p, are assumed to be constant. Equations (2.1) and (2.2)
can then be combined to give the so-called storage equation

V- [n(v,— )]+ V v, = 0. 2.3)

Let p be the pore pressure and k the hydraulic conductivity of the soil matrix.
With inertia neglected, momentum conservation of the fluid phase is given
approximately by Darcy’s law

Vp = py,8— (npy g/k) (v, —v5). (2.4)

Following a convention in ground water hydraulics, we define the drawdown s as the
change in piezometric head from the initial state,

s=p/pwg+z—H, (25)
Phil. Trans. R. Soc. Lond. A (1992)
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where H is the initial height of the water table in the phreatic aquifer, measured from
the bed rock at the bottom of the whole system. In terms of s, Darcy’s law becomes

kVs = —n(v, —v,). (2.6)
Combining (2.6) with (2.3), the storage equation may be written
V- (kVs) =V v,. (2.7)

If the total stress tensor in the solid matrix is denoted by 7, with components 7;, the
approximate equation of solid momentum conservation is, after ignoring inertia,

The convention of positive tension is adopted here. Let the effective stress tensor o,
with components o;;, be defined by

o=T1+pl, (2.9)
where I is the identity tensor. Equations (2.8) and (2.9), can be combined to give
Voo =Vp—((1—n)ps+np,)g, (2.10)
or, in terms of the drawdown s,
Voo =p,gVs—(1—n)(ps—py) 8. (2.11)

Let all quantities (except depths) of the initial state before pumping starts be
distinguished by the overhead bar, then,

5=0,=7,=0, F=p,g(H—2) (2.12)
and Vo =p,8—[(1—m)ps+np,lg. (2.13)
All pumping-induced departures from the initial state will be distinguished by
primes, i.e.
n=n+n, p=p+p, oc=7+o,
k=k+k, v,=u1, v, = ), (2.14)
b=B+b, h=H+h, s=5=9p/p,9,

where h, H and A’ are respectively the instantaneous height, the initial height and the
change of height of the water table. Similarly, b, B and b" are the instantaneous
thickness, the initial thickness and the change of thickness of a soil layer.

(b) Constitutive laws for finite strain

We are particularly interested in the response of a soft soil in which the initial state
due to self weight and the transient state during pumping are expected to be one of
finite strain. It will be deduced later that soil deformation in this three-dimensional
problem is approximately one dimensional to the desired accuracy. Hence empirical
relations between stresses and strains well established from one-dimensional tests
will be relevant and will be cited here first. These relations are usually expressed for
the effective stress and the void ratio e, or the porosity n, which are related by

e=n/(1—n), or n=ce/(l+e). (2.15)
One customary form of the empirical relation is
de =a,do,,, (2.16)

Phil. Trans. R. Soc. Lond. A (1992)
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where the coefficient of compressibility e, is an empirical function of e (see Lambe &
Whitman 1969, p. 155). An alternative form is

de = —C d(logy(—0,)) (2.17)
where O, is the compression index. Equations (2.16) and (2.17) can be combined to
give a,(e) = — (1/In 10) O, /o, (e). (2.18)

For virgin compression, the compression index O, of some materials may be
approximated by a constant within certain range of stresses. For cyclic loadings, C,
is often multivalued as the stress changes quasi-statically through virgin com-
pression, swelling and recompression (see Lambe & Whitman 1969). To explore
possible hysteretic responses caused by this multivaluedness, we adopt a schematized
relation between e and log,,(—¢) in which virgin compression follows a straight line
with constant slope C,, and both swelling and recompression follow another straight
line with a smaller slope (. This schematization can be readily replaced by the
actual relation for any particular soil without modifying our theory. While typical
values of C, for sand are 0.001-0.01 and 0.2-0.4 for common clays, the Mexico City
clay is exceptionally soft and C, has been variably estimated to be in the range 4.5-8
(Holtz & Kovacs 1981 ; Lambe 1951). Since the consolidation process is usually very
slow, these quasi-static relations will be adopted for both the initial and the transient
states.

Just for the order estimation of solid strains, we later refer to the linear equations
of poroelasticity in terms of the constrained modulus D and the shear modulus ¢. In
linear theories, they are related to the usual Lamé constant A by A = D—26 and to
the bulk modulus § by D = f+3G. For finite soil strain the constrained modulus is

related to e by _
D = (1+e)/a,le). (2.19)

(c) Hydraulic conductivity
The empirical Kozeny—Carman equation between k and e will be adopted :

¢, e
p;gﬁﬁ* (2:20)
S

where p and x are the mass density and the viscosity of the pore fluid (Lambe &
Whitman 1969, p. 287 ; Bear 1972). Kozeny’s constant ¢, varies with the shape and
size of the particles, and is of order 0.5. The specific surface M per unit volume of
solid material is also a characteristic of porous medium. It varies from 100 em™ for
coarse sands to 10° cm ™! and more for clays. The ratio pg/p of the fluid weight density
to its dynamic viscosity is of the order of 1077 m s™* for water.

Let the initial value of  be given at one reference depth within the layer; its
variation #(z) throughout the layer as well as &(z), k(z), and D(z) are calculated by
assuming virgin compression. Such computations and results have been made by
Fallou et al. (1991), and will be cited later.

(d) Boundary conditions

On the horizontal bottom I,:z =0, the bed rock is assumed to be rigid and
impermeable. Let (], w;) denote the radial and vertical velocity components of the
solid matrix in the lowest layer (the artesian aquifer) distinguished by subscript (-),.

Then,
wy=w; =0 and 0s;/0z=0. (2.21a, b, c)
Phil. Trans. R. Soc. Lond. A (1992)
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Let the lower and upper interfaces be given respectively by I';:z=b,(r,t) and
I'y:z = by(r,t) +by(r, ). Across each of them continuity of solid velocity, water flux
and stresses is required,

(] = [¥]., (2.22)
[kVS -n]_ = [kVs'-n],, (2.23)
[6-n]_=[o""n], (2.24)

where the subscripts [ f]_ and [ f], stand for f measured just below and above the
interface respectively. On the water table I, :2=h =H+h (r,t), capillarity is
ignored so that

§=h only. (2.25)

Since the seepage flow can only be tangential to the water table we have
(0/0t+ vy, V) [z—h(r,t)] = 0, (2.26)
or oh' JOt+ (v, —v}) VA +0v,- VA — v, V2 = 0. (2.27)

It follows after invoking Darcy’s law that
oh"  k,0s; 0n ny oh'  ky0s;

& my dr dr Y ar T om0z

wy, on Iy (2.28)

In addition [6"'n]_=[6"'n], onl}. (2.29)
The ground surface, I';:z = b, +b,+b,, is assumed to be stress free
¢'n=0 onl,. (2.30)

We schematize the pumping region by a vertical well of radius @ into which water is
extracted only from the bottom aquifer, at the total rate of @,

b, /
f 2nak, aas; dz=Q(), r=a, 0<z<b,. (2.31)
0

No water is pumped from the top aquifer,
0s3/or =0, r=a, b +b,<z<h. (2.32)

Finally all velocity components must vanish at r — co.

3. Estimates of order of magnitude

As a basis of perturbation analysis we first establish the order of magnitude of all
physical variables, under certain prescribed conditions. The generic symbol f will be
used to denote the scale of any quantity f. To estimate solid deformation we use the
linearized Biot theory of poroelasticity based on Hooke’s law, with the elastic
coefficients already defined in §2b. For this limited purpose Biot’s equations are cited
in Appendix A.

(@) Drawdown

Near the well the radial length scale is @. From the discharge boundary condition
at the well, we get the scale relation

2nbk, 8, = Q, (3.1)
Phil. Trans. R. Soc. Lond. A (1992)
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\:Vhere b is the common thickness scale for all three layers. The order of magnitude
8, is, therefore, 5 = 0((1/2@@/5121)' (3.2)
Continuity of pressure across the interfaces I'; and I', implies

§,=38,=38 =38. (3.3)

(b) Horizontal length scale and the radius of influence

Let 7 be the radial scale of the cylindrical zone which is significantly affected by
pumping. By mass conservation, water pumped into the cylindrical region is the sum
of downward leakage from the aquitard through a disc of radius O(7), and the radial
flow in the artesian aquifer. In general, all three rates are comparable, hence

2nJ k, aaS:rdr = 0(9). (3.4)

0

It follows from (3.3) and (3.4) that

b7 = (ky/ k). (3.50q)
The typical hydraulic conductivity of sand k; is of the order 1072-107" m s™%, while
that of clay k, varies between 10™° and 107** m s™*. Thus k,/k, varies over a broad
range of very small values 1071°~107? and implies shallowness. This fact is well known
in well hydraulics (Bear 1979), where the quantity 7 is called the radius of influence.
We use the small parameter § defined in (1.1):

8 = ky/ky = O(ky/ley) = O(b/7)? (3.5b)

to gauge all small quantities, where ke, and Ic are the depth averages of k; and k,.
Note that, if the aquitard is perfectly 1mpermeable then #/b— co. Wlthout seepage
flow the aquitard would not experience compaction and could only settle by
following bodily the deformation of the supporting aquifer.

In some situations, the horizontal length scale may be different from the hydraulic
radius. For example, if a town withdraws water from an aquifer through densely
distributed wells, then the horizontal dAimension of the town should be taken to be
7. In that case, the usually small ratio b/7 is not related to the conductivity ratio as
it is here.

(¢) Solid velocity

As may be expected intuitively, the radial movement of the solid matrix is almost
everywhere much smaller than the vertical movement. This can be seen from the
linearized momentum equation in the radial direction (A 5) cited in Appendix A. By
balancing the dominant terms (0/0z) G 0u’/0z and p,, ¢ 0s’/Or Ot in the radial equation
(A 6) and similarly (0/0z) D ow’/dz and p,, g 0%s"/0z0¢t in the vertical equation (A 7),
we find, in each layer,

@), = Ob)f) =&, i=1,23. (3.6)
From the vertical component of Darcy’s law, (2.6), we infer that
= O(k,0sy/02), (3.7)
thus the following scale relation holds
Wy ~ kyd/b ~ (ko) ko)) Q)52 (3.8)

Phil. Trans. R. Soc. Lond. A (1992)
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By continuity of displacements, we must have

Wy ~ Wy ~ W. (3.9)
To highlight the importance of the soft aquitard to consolidation we make the
simplifying assumption that the aquifers are much harder so that

D,/D, = 0(¢%), (3.10)

where D,, i = 1, 3 and D, are the depth-averages and also the scales of constrained
moduli in the aquifers and the aquitard respectively. Under this assumption the
velocity variations in the hard aquifers are much smaller than the velocities
themselves. Indeed by using Hooke’s law again only for scale estimates, we invoke
stress continuity at the interfaces to get

A,/ A, = O(D,/D,;) = O(&) (i = 1,3). (3.11)

Thus the vertical compaction in the aquitard is, in general, greater by a factor of 67
than those in the aquifers. It should be emphasized that %, and A, of the top aquifer
are not of the same order, since w, = w, at the interface I',. This distinction is the
consequence of (3.10) and is important for later analysis. For the bottom aquifer,
however, this distinction disappears since w, = 0 on z = 0, thus

b, = Ab, = O(8%) Atb, = O(62) b, (3.12)

(d) Consolidation timescale and storage coefficient
Because of its relatively low permeability and high compressibility, the aquitard
must control the timescale of consolidation. Again we use Hooke’s law only for scale
estimation, then in the vertical momentum equation for the aquitard (equation
(A 7)), the two dominant terms are

0%s, 0 Qw,
Pwi3 2, and é}:(DZ az)' (3.13)

The timescale f can therefore be estimated by balancing them,

A A A2 A A
f=La®S_pugh _Fpb_Frd (3.14)
D, v Dk, k, w
where & is defined by .
Fn = pugh/Dy. (3.15)

The parameter &, is called the storage coefficient in hydrology and is physically
associated with gravity or self weight. In existing literature (Verruijt 1969) gravity
is often omitted in the vertical balance of forces. In one dimension, the total stress
o,,—p is constant in depth. Let us recall (2.10) and examine the effect of such
omission in the aquitard. After subtracting the static terms we get

7 (ps—pw) g = O((ps—py) 9)- (3.16)

From (2.2), we find the scale #,; of porosity variation n; to be of the order
fhy ~ biby/b and A, ~ {AB,/b (i =1,3), (3.17)
hence i)y = O(S%). (3.18)

Phil. Trans. R. Soc. Lond. A (1992)
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It follows that the omitted buoyancy term is of the order

O((ps—Px) 9 w95/ Dy), (3.19)
while the remaining terms in (2.10) are of the order
Py s 3z = O(p,,g3/b). (3.20)
The ratio of (3.19) to (3.20) is of the magnitude
Ps— PwPw gbA
=R = O(Sy). 3.21
D, ) (3.21)

For a thick layer of soft clay, & may be of order unity, hence the body force terms
cannot always be neglected. In this paper, it is assumed that &, = O(1) in the
aquitard. From (3.14), & is also a measure of the ratio of the vertical settlement f
to the drawdown in the layered system. Therefore, from the values of D, and b of the
aquitard, one may also estimate the order of magnitude of the vertical subsidence
from a unit drawdown.

In the aquifers the corresponding storage coefficients are

r,=Do/D) Sp =0 S (i=1,3), (3.22)

which is much smaller than &} in the aquitard.

(e) Solid stresses
3

With the aid of Hooke’s law (A 3), it is readily seen that
. oWl s A bt A Fpd P
Gope ® D, a;t ~ sz =D, ; R Py g8 (3.23)
and for all layers
Oy O QW w' d .
a;zNG(©z+6¢)/D P ~u‘;_0( ), (3.24)

where (3.14) and (3.6) have been used.

(f) Water table displacement

Ignoring capillary effects, the dynamic boundary condition at the water table
requires that p = 0. In the linearized limit s’ = b’ at I',. Therefore the scale of A’ is
§ also.

For convenience, all scales are summarized in the second column of table 1.
(Lagrangian variables E,Z,T to be introduced in §4, are also included.) An
equivalent set of scales is listed in the third column for normalization purposes. Note
that k;, a, and D, are normalized by their depth averages in each layer. In subsequent
sections, all variables and dimensional parameters will be normalized according to
column 3 in table 1 below, unless otherwise stated. All normalized quantities are
distinguished by overhead tildes.

4. Lagrangian coordinates

Because the vertical deformation in the aquitard is expected to be comparable
with the layer thickness, the eulerian positions of the interfaces and the water table
are unknown a priori. To circumvent this difficulty we follow Gibson et al. (1967) and

Phil. Trans. R. Soc. Lond. A (1992)
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Table 1. Orders of magnitude and normalization scales (i = 1,2, 3)

variable or parameter order of magnitude normalization scale

@ Q Q

s, § = Q/2nbk, b

W 8 b
Tizer e Pu 98 Pugb
e 8ip, g8 8ip,, gb
Tie Pugd Pudb
? Pw9s, Pwgb
w, b = k,38/b ey

u; i = &b 5k,

v Lrd b

B, b, b b
r,a,R #=b/ 3 b/ 1
2,7 b b
t,T Prblk, Snb/k,
D, D, D,

a’l) a:v @v

ke ke ke,

use lagrangian coordinates (R,Z) which stand for the initial radial and vertical
coordinates of each solid particle. Since the time derivatives in lagrangian coordinates
mean material derivatives in eulerian coordinates, we distinguish the lagrangian time
by 7. The following relations hold between the eulerian and lagrangian coordinates,

"R, Z,T) = R+vR,Z,T); «R,%,T)=Z+2R,%,T), (4.1)

where 7" and 2" denote the solid displacements from the initial position and 7' denotes
time. Normalizing according to column 3 of table 1, we get

F=R+ovR,Z,T);, 5=Z72+52R,ZT). (4.2)
The jacobian of transformation is

o(r,z) 2 _ o
B2 aZ+0(6) 1+aZ+0(8). (4.3)

J =

Thus, owing to the assumed sharp contrast of permeabilities, the jacobian is
essentially the vertical strain of the solid. It follows by combining this result and the
exact law of mass conseryation of the solid matrix,

(I=n)J =1-mn, (4.4)
0z 1—7 1+4e

The spatial derivatives of any function F with respect to eulerian and lagrangian
coordinates are related, in physical variables, by

OF _1(0:0F 2:0F\ OF _1( 0roF oroF .8
or  J\OZOR ORJZ) o J\ O0ZOR ORZ) (4.6)

Phil. Trans. R. Soc. Lond. A (1992)
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After normalization according to column 3 in table 1, the preceding relations can be
approximated by
oF  oF 0z JoROF

CoE_EI2T L 0), 4.7
of  oR 03/0Z oZ @ (7)
oF 1 oF 1—ndf 1+eoFf

== ——+0(8 0(%) = —+0(9). 4.8
0% 03/0Z07 =127 —nZ @) 1+edZ @) (8)

Equation (4.8) will be repeatedly used in subsequent sections. If a function Fis
defined on an initially horizontal surface composed of the same solid particles, e.g.
the interfaces between two soil layers or the ground surface, the lagrangian
coordinate Z is fixed and 0F/0Z = 0, hence

oF JoF = (OF JOR) (14 0(9)). (4.9)

Note that the water table moves through the solid matrix, therefore (4.9) does not
hold. Also the material time derivative is related to eulerian derivatives by
@ oF oF _oF oF _oF

el i o2 = ot S (1+00)), (4.10)

where @' and @ denote the # and £ components of the solid velocity #;.
We remark that the change from eulerian to lagrangian coordinates has a subtle

effect on § defined in (2.5) in eulerian form. Evaluating the definition (2.5) at
T = 0 and any 7 # O respectively, we get

0 =pFR,Z,0),5R,72,0),0)+7Z—H (4.11a)
and o o o o L
Y(FR,Z,7),%R,2,T),T) = p(FR,Z,T),2R,Z,T), T)+% +Z—H. (4.11b)
Since p(F(R,Z,0),%(R, Z,0),0) = p(Z), the difference of (4.11a) and (4.11b) gives
yFR, 2,1, 2R, Z,T),T) = pFR,Z,T),2R,Z,T), T)+7, (4.12a)
which can be expressed simply as
YR Z,T)=pR,Z,T)+7. (4.12b)

This result holds for a moving solid particle. In contrast, the corresponding relation
for a fixed eulerian point is given by the last of (2.14).

5. The aquitard

In eulerian form, the z component of the exact equation of solid equilibrium reads

A0y, 10 ds,
= a2 _ .1
az +-— r a (7‘0-2rz) pwg az + (1 nz) (ps pw) g, (5 )

where o, is the sum of geostatic and perturbation stresses. After normalizing (5.1)
according to the third column of table 1, we get

06, 1o . . o
5 0550w = 5

Phil. Trans. R. Soc. Lond. A (1992)
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The storage equation (2.7) in eulerian coordinates is similarly normalized to give
0 [~ 08, 10(.~08\ ow, (10 .,
az(k2 65)+6F6F(Tk2 87’) = Porarh) (6:3)

Let us introduce the following perturbation expansions for pumping-induced
disturbances,

~r 0 ~(0 ~(1 s~ ~(0 ~(1
U;zz_o'éz)z-l_ao-(zz)z-l_"" 0'272—-0'(2%4‘80'(2,;4‘.”,
8 =80+ +..., Wy = D + 0w + ..., (5.4)

T, = AP +0a0 + ...

By virtue of (4.8), (5.2) may be written in dimensionless lagrangian coordinates

5 5 5(0) 3(0)
o, _ T, +657) _ 5 +(1_ﬁ2)(£§_1

AR/ oz P
From here on we denote 62, simply by ¢ for brevity. At T={=0,2=27, ¢ =

3 = 0 and (5.5) describes the initial state &,,

)+0(3). (5.5)

06,/0Z = (1—,) (ps/pw—1). (5.6)
The difference of (5.5) and (5.6) is
AF© /o7 = 08© JOZ + 0(9). (5.7)

After using (5.4) and (4.8) the storage equation (5.3) also becomes
i(~ 1+€2@) 0w
Z\ *lte, 072 ) o7

The right-hand side can be further reduced to

0(9). (5.8)

awg»_ia(Z+z~<°>)_ia(Z+z~')__a_<1+e2)
oZ o7 or or o7 or\1+e,

1 e, 1 de, 05  a, o5©

= —2 = 22 = 2, 5.9
1+e,0f 1+4+¢e,dd, o7 1+e, oT (5.9)
where (2.16) has been used. Combining (5.7), (5.8) and (5.9) we get
0 ([~ 146, a&;‘») d, 0FYP
— | = 2 1+ 0(9). 5.10
az( The, 0z ) 1hg of ) (5-19)

Equation (5.10) without the error term was first deduced by Gibson et al. (1967) for
strictly one-dimensional consolidation of a soft layer without phreatic surface. It is
obtained without omitting self weight or assuming constant total stress, unlike
Cooper (1966) or Smiles & Rosenthal (1968). Based on §3 it is shown here to hold
approximately for a three-dimensional problem in a shallow layer, with an O(4) error.
If Z is replaced by X defined according to

¥ 1 5 s fz dZ
—_— = — or X— 1 -,
dZ 1+e, 51+8

(5.11)

Phil. Trans. R. Soc. Lond. A (1992)
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where B, is the normalized initial depth of the artesian aquifer, then (5.10) becomes

d ( k, aa<°>) aag»
+0( 5.12
oX\1+e, 0X v oT (©). (6.12)

It was shown by Gibson et al. that, by means of the constitutive law (2.16) or (£.17),
(6.10) may also be expressed as a nonlinear partial differential equation for e,

0 ( k, do“°’832> (p ) d ( k, )662 e,
Ps 4 2= 24 0(3). 5.13
oX \1+e, de, 9X w  Jde;\1+e,/aX T ©) (5.13)

They have pointed out that, by assuming
ky, dol® d ( de,
1+e, de, and de, \do

to be constants, (5.13) can be reduced to a partial differential equation with constant
coefficients. In our study more realistic features of the soil are explored, and no such
simplifying assumptions will be made. However, the coordinate defined by (5.11) will
have some numerical advantages and will be retained. Also in §8 we transform (5.10)
and (5.12) for the drawdown 3 in terms of which the boundary conditions on the
interfaces are easier to state, as is deduced in later sections.

6. The artesian aquifer

Again based on the normalization scales in table 1, the dimensionless form of the
storage equation (2.7) is

~ ~r 2 ~ o~/ ~
%(k 98—1)+§9(ﬂz as) D) 4 5520 (6.1)

Yog)  FoF\ loF FoooF 0z

The boundary condition on the impermeable bedrock is
08;/02 = 0. (6.2)

On the lower interface I, : 2 = b, (#,), the normal flux must be continuous. The exact
expression of the upward unit normal vector is, in physical and dimensionless forms,
n, = e, — (b /r) e _ ez—6(85~;/a?)e y

[14(0by/0r)®]F  [1+ 0%(0by/0F)%

(6.3)

which can be approximated by
n, = 0(0) e, +[14+0(0%)]e,. (6.4)
Since 722/121 = (0(d), (2.23) can be normalized to

08, 03
i (a“%~ r+%~ ) n, = ok (a* e tle )'nl, (6.5a)
or 0k, 08, /0% = k,08,/05+ 0% onT,. (6.5b)

This condition is applied at the instantaneous position of I'y(#, ?).
Introducing the perturbation expansion
3

7 = 30+ 850 +0(8%), (6.6)
Phil. Trans. R. Soc. Lond. A (1992)
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we can readily show from (6.1), (6.2) and (6.5b) that to order 0(8°), 9 is constant
in depth,

O = 07, 1) = 3O (7, b,, ). (6.7)

The second equality follows by continuity of pressure. Thus the flow in the artesian
aquifer is primarily horizontal. At the next order O(d) we have

[~ &Y 190~ 03O 1[0~ 93
a_s(klﬁ) rar( ik, ar> “[ar(’“ oF )], (6.8)

with the boundary conditions

BL/ZE=0 (£=0), (6.9)
ke, 08 /08 = k, 030 /05 (£ = b,(F,1)). (6.10)

The ordinary differential equation (6.8) and the boundary conditions (6.9) and (6.10)
define an inhomogeneous boundary value problem for " in e [0,b,]. Integration
once, we get

ORI A 0
]C2 0z ——?a—?(Tkl oF on 1—'1‘ (611)

Mathematically this is the solvability condition for 3V, since the homogeneous
boundary value problem admits the non-trivial solution §”. Equation (6.11) serves
as a boundary condition for the aquitard drawdown 3.

Let us transform (6.11) to lagrangian coordinates accordlng to (4 8) and (4.9).
Since the aquifer is hard, e, = 2, so that ky ~ k with an error at 0(6%), the hydraulic
conductivity £, can be taken outside the parenthes1s Also b, = B, +0(6%) from (3.12).
Equation (6. 11) can therefore be transformed to

N 7\ 930 . B _ 03 _
kz(”%)as—i:—-’?-lf—l—@:(zeas—i) on T, (6.12)
L+e,) 37 B R\ R

where (4.8) has been used and I, denotes I', at 7 = 0. Note that this boundary
condition contains a second- order derivative of 8 with respect to the radial
lagrangian coordinate £. From (2.31), we obtain after normalization

B30 /oR =vQ(T) R=a, only, (6.13)

where ¢ = Q/Q and the dimensionless parameter v is defined to be
v=38/b=Q/2nb%%,, (6.14)
which is a measure of the well discharge. We further require
§V->0 as R-—>o0, onl. (6.15)

Since the approximate equations are derived for B = O(#), the solution is valid for
all RA> @ only if the well radius @ is of the same order as #, i.e. @ = a/F = O(1). If
a < b, auniformly valid theory would require a fully three-dimensional inner problem
near the well where both radial and vertical length scales are comparable. The inner
solution should then be matched to the outer solution to (6.11). This is a prohibitively
complicated task. In later examples we choose a small value of ¢ which is still much
larger than the typical layer depth.

Phil. Trans. R. Soc. Lond. A (1992)
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7. The phreatic aquifer

Because the water table can move through the solid matrix significantly, the fluid
mechanics in this layer is highly nonlinear. Our plan in this section is as follows. We
first examine the storage equation in the water layer and the boundary conditions on
the interface I, and the water table I'y. From order O(d) we get a solvability
condition for &V, leading to a boundary condition for §® on I',. Considerable effort
is then given to manipulate this condition which involves nonlinear coefficients
depending on & and e,.

In the instantaneous wet zone, b, +b, < Z < k, the dimensionless eulerian storage
equation is similar to (6.1), hence,

0 [~ 03, 08, s
'6%(’“3@ ) ( e ) o). (1.1)
Let us normalize the kinematic boundary condition (2.28) on the water table,
Kk O (kOB ON o O k08 o
85# 6t+8n3 5 o ok 36~ a~+8 5 =0 only, (7.2)
where K= lcl/ks. (7.3)

As for the flux condition on the interface I',, we begin by finding the upward unit
normal vector:

e,—(0by/dr)e, e,—d(db,/d7)e,

h, = ; P S Aail
[1+(0by/0r)?]2  [1+48(0by/0F)?]

[ 8(@1;’)2] #aab:e +0(8%), (7.4)

which is quite different from the unit normal to I'; because I, is deformed by o).
The flux condition (2.23) is normalized to

108, 08, 1 08 08,
ok ( R ) ny =k (a* 683 e +=2e ) n,. (7.5)
Keeping terms up to O(0) we have
WYL AL L
Ok, =2 a~ = Ok, 5 o ky % 5 +0(0%) on I, (7.6)

Let us now introduce the perturbation expansions to solve the boundary value
problem defined by (7.1), (7.2) and (7.6):

8 =80+ +..., W=+ +...,
B o= hO 46+ ...

At the leading order O(8°), it is evident from (7.1), (7.2) and (7.6) that 3 is also
independent of depth so that

3O = 3OF 8 = A, b+b,<i<h. (7.8)
The last equality follows from (2.25) at order O(¢°).
Phil. Trans. R. Soc. Lond. A (1992)
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At order O(d) we have from (7.1)
0 (- 08 10 ~ 08 O .
&(k(i@_) T@T(Tkaw (b1+b2) <z< h, (79)

while the boundary conditions (7.6) and (7.2) give respectively

L OED . Og SO, .~ 03O (3B,\?
;08 03 | - 08P 3b, - O3 (9’?3) on I, (7.10)

36z ks 0z +hy oF oF % oz \oF

Lo kb0 fas0eio
23 7 4 . A1
and n, 2 Py o Tn, o5 or B only (7.11)

Note that in (7.9) to (7.11) 3 can be replaced by 3 (I,) by virtue of the continuity
of pressure, and that the last term in (7.10) vanishes because of (7.8). Now we proceed
to derive a solvability condition for . Integrating (7.9) in £ across the wet zone in
the top layer we obtain

_ 3 . a§<;>] N [0(~~ a§<3o>]
[@EL [Ic3¥r2— (B+R—b,—b,) | |k af)r; (7.12)

Use of (7.10) and (7.11) in (7.12) leads to

P a;:(o) @g(o) ah(o)

Mg ar oy o TR
T
~ 08 ~ 08 ab’ 10 (., 08"
—K[’Cz 625 ]r —]C3 a:; a~ [H+h(0) b -‘bg];a—i(fk:aﬁ:) (713)

This is the solvability condition. 3
Now let us apply the dynamic boundary condition § = A = §(I",) to rewrite
(7.13)

N K QRO T . [050] @
=y az] +E [T, G h)

N 10 [~ 0s
H+hO—b, —b,)| == = .

+ (H + )[7’6 (7’163 o7 )]r2 0, (7.14)
where 8 is evaluated at the instantaneous interface I'y:Z = b,(%,#). To eliminate
WY = @ (I,) we integrate the storage equation (2.7) at leading order across the
entire aquitard, and use the boundary condition (6.10)

N ~ 0§V ~ 08 10 (. 08
WO(T,) = [kzO—;] = [cha—Z] +b1{~a—~< Tk, 3 )] (7.15)
' r,

We now change the factor H+4©® —b, —b, into a more convenient form. At § = 7
= 0, the interface I, is at # = B, + B, Whlle the water table is at £ = H. At any later
time 7, I, is at 2 = B +B,+b), whlle F isat 2= H+A'. The net change of thickness
of the wet zone in the top aquifer is appr0x1mately equal to the net rise of the water

Phil. Trans. R. Soc. Lond. A (1992)
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z 4
(a) ()
—Z«l:-_—_ 2 v‘——::'l’:’__i ________ v__ — «—7=H
“"~::€‘- :v:—” h Z= 0; B3
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Dy | — B
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by======== | ="~ . i _
! H %
Il 7 i ' _;I{

Figure 1. Definition sketch (@) in eulerian coordinates; (b) in lagrangian coordinates.

table relative to the ground surface, E’—I;’ +0(6%); the error being due to the small
compaction of the two aquifers (cf. 3. 11)) Note that the solid particles commdmg
with the current water table at any ¢ come originally from the level = H_ which is
not the same as [ and varies with time and horizontal position, as sketched in figure
1. Clearly, the following equality holds,

1

H,—H =} —b,+0(8). (7.16)
It follows that

A+RO 5,5, = A+H,—A+

—B,—B,—b,+0(8%)
=H-B,—B,—(H—H,)+0(8). (71.17)

Making use of (7.15) and (7.17), (7.14) can be rewritten as
8O k 0RO b k[0 [ - 65(2°)> oz
(1_”3)K[ : az] Mg T [aﬁ(”“ oF n”“ o

L o N T
X = (30 —B) + (A — B, — By~ (A~ 1,)) 5 [ar(k - )]r (7.18)

ol

Changing (7.18) from eulerian to lagrangian coordinates according to (4.8), (4.9)
and (4.10), using A© = &(I,), and the fact that the phreatic aquifer is hard, we
obtain

- 142,030 x [950 J =19 (5080
1—7 k 2 2) —ﬁ—[ i] + 7, K k:—:(R i)
(1= fta) (21+ez oz *FrloT Ir, ° V'RoE\ oR/r

+k[a~(0>] 9 6© —8)+[(A—B,—B,)— (H—H,)] [O(Ra~<o>>] (7.19)
R Jr,0R S ar ot

The negligible compaction in the aquifers has been used in replacing n, by 7, and k,
by k.
As a last step we note first from (7.16) that

3O —p, = hO—§, = A —H+0(8%). (7.20)

Furthermore it is shown in Appendix B that
FO) =~ (1 —my) (H—H,) = (1— ;) (3 —b}). (7.21)
Phil. Trans. R. Soc. Lond. A (1992)
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By combining (7.19) and (7.21) we obtain finally,
— 7 [~ z. 05O 5(0) I 05
(a2 %) -2 B el (0T
Ty l+e, 07 /r, Srl o7 Ir, RoR\ R /r
v s s 10 (5080 k.
+(H—-B,—B —3—..—~( —2:‘) +—2
b= Zem\ " oft ), (i —ny)
5(0) 950 50
x[aai 0% 010 (Ra‘s—i)] . (7.22)
OR OR RoR\ oR

The preceding equation serves as a boundary condition on I, for § in the aquitard.
Note that the finite displacement of the water table contributes to the nonlinear
terms in the last brackets. In addition nonlinearity arises from e, which depends on
J, through the empirical law (2.17). Hence water and the soil matrix are strongly
coupled. The unusual mathematical features of (7.22) are two-fold. (i) It involves §{’
on both I'; and I, (i) It involves both time and radial derivatives of § and implies
radial diffusion. Therefore we need the following boundary conditions

BW/R=0 R=d onT,, (7.23)

W >0, R>o onl,, (7.24)
and the initial condition . .
SO(R,Z,0)=0, T=

=]
=
bo
=

8. Equation governing the aquitard drawdown

Since the boundary conditions (6.12) and (7.22) are expressed for 3, it is
convenient to express the governing equation (5.10) in terms of the aquitard
drawdown also. Integrating the lagrangian equation (5.7) with respect to Z we get

(0>_O.(0>( )+ [350 — ~(0)(f‘2)], (8.1)

where ¢{” denotes the stress at any Z. Taking the lagrangian time derivative of (8.1),
i.e. by following I',, we obtain

Gl aa“’)(f 0GP (Iy) | (03 03(TI)
~ ~ + T~ T T~ (8 2)
or or or or '

Since 06, /0T = %, ,, the lagrangian time derivative of (7.21) is
(1 —125) (03 /T — L p W) = 06O (1) /T . (8.3)

It then follows from (8.2) that

05;0) [a~(0)( ) N _ ] 08® ag(m( f')
L (1—my) | S (T |+ L S e
080T _ o OB BEO(T,) 8
=My (1 —71y) Fp WO () + —2 = —,—2 24 2
3 aT ( 3) T %2 ( 2) aT 3 E)T aT
L F 145,801 5 5 & s
(1—73) L [k21+e2 7 F‘, B, <Z < B,+B,. (8.4)
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The last equation is obtained with the help of (7.15). This transforms the right-hand
side of (5.10) from & to 3. The left-hand side of (5.10) is easily rewritten by using
(6.7), yielding,

3(0) 230 . 7 0307
as2~ =ﬁ3@82 (~r2)+(1_ﬁ3)%[k21+e2a82~]
orT oT L+e, 07 Ir
1+2, 0 (» 142,08\ =~ - =~ =
+ a, aZ(k21+62 7 B, <Z<B,+B, (85)

An expression for 35((I",)/0T can be obtained by evaluating (8.5) on I',. The result
can be substituted into (8.5) to yield finally

B3O 1+ 0 (~ 1+e2a~<0>) [~ 1+e-za§;°>}fz
= ky Sl ky =
L+e, 0Z L+e, 37 Ir,

of 4, oz
_(1+¢g, 0 (» 146,08 < o oo
Z . .
ca(125) [SEEE)] L Bi<z<neh, mo

In summary, (8.6) is the governing equation for the vertical diffusion of & in the
aquitard. At any fixed R, (6.12) and (7.22) provide two boundary conditions on the
bounding interfaces I'; and I',. On the other hand, the same two interface conditions
govern the radial variation of 3”. Together with two radial boundary conditions
(6.13) and (6.15) on I';, two radial boundary conditions (7.23) and (7.24) on I, and
the initial condition (7.25), we have now defined an initial-boundary value problem
for 3. The mathematical problem involves two space dimensions and time, and can
be solved by an alternating direction scheme.

9. Other physical quantities

In the aquitard, 3\, e,, k,, and @, are related by constitutive laws and are
calculated along with s“’) at each time step, as will be described in §11. Once they are
determined, the water table displacement relative to the instantaneous ground
surface follows from (7.21):

H—H,=—(h"—b})+0(8) = —6GO(Iy) /(1 —,). (9.1)

From the coordinate relation (4.2), the transform relation (4.5) and the smallness of
the aquifer compaction, the aquitard settlement is given by

BZ
by = 2(I)) = 2(Iy) +0(8h =f o7 17 - f b7 (9.2)
B, 1+¢,

Physically, the integrand in (9.2) is the ratio of the change of void volume to the
initial volume in a soil column of unit cross section. Thus the aquitard compaction
is due to the total void change throughout the depth.

To obtain the change of the total stress 7, we need the lagrangian form of (2.8) for
solid equilibrium in the vertical direction

OF+7) [y Pay 170

Phil. Trans. R. Soc. Lond. A (1992)
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In the initial state, (9.3) is
07o/0Z = [(1=15) ps/ P+ o). (9-4)
Integrating the difference of (9.3) and (9.4) we get
= d €&
= VA .
To="Taly)— J; 1+e2d (9.5)

throughout the aquitard. Thus the total stress is in general not constant in depth and
the variation is caused by the accumulated change of void ratio in the aquitard.

The effective stress perturbation is given by (8.1). For alternate expressions to be
used later we apply (7.20) and (9.1) on the upper interface I,

BOT,) = —(H—H,)+b;, = 6(I,)/ (1 —m5) + b, (9.6)
It then follows from (8.1) and (9.2) that

X
FO +2, 6O(I,) = 30 — J ) 1+:2dz—§<0> J (e, —2,)dX. 9.7)
2

B, X,

10. The limiting case of a hard aquitard

Hantush (1960) studied a three-layered soil system where DI,DZ,D are
comparable, yet all large so that &, = p,, gb /D, is small. If &r < 1is assumed in our
theory, the limit should check with Hantush’s theory with D,,D,> D,.

By definition (2.19) a, is small for large D,. It follows from (2.16) that
de,/da,,, < 1 so that the deformation in the aqultard is small, i.e. e,(z) & const. =
2,(I,) and k, ~ k ~ 1. Also J & 02/0Z ~ 1 so that the difference between eulerian and
lagrangian coordinates becomes negligible. At the upper interface I',, as &, 0, we

obtain from (7.22) ) /A =
08 /T -0 on I, (10.1)

Equation (8.5) then reduces to a simple diffusion equation in eulerian coordinates

03  ~ 0~ 03
=Dl (102
where D, = (1+e,)/d,. (10.3)
The boundary condition (6.12) on the lower interface I, becomes
~ 08  ~ ~10 [ 050 _
kz—gz;———klbfar(ra—r) onl}. (10.4)

At the upper interface, (10.1) and the initial condition (7.25) may be combined to
ive _
g =0 onl/l,. (10.5)
Equations (10.2) to (10.5) indeed agree with Hantush in the limit of DI,D > D,.
For constant k, this special problem can be solved formally by integral transforms
from which asymptotlc solutions for large and small time have been used to verify

the numerical scheme to be sketched in §11, which is similar to that used in Fallou
et al. (1991).

Phil. Trans. R. Soc. Lond. A (1992)
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11. Numerical scheme

As the vertical variation of drawdown 3 is expected to be more pronounced near
the lower rather than the upper interface, non-uniform discretization along the Z
axis would be needed for numerical efficiency. Since the coordinate X introduced by
(5.11) is related to an integral of &,, a more convenient uniform grid in X can be used
to achieve same or better accuracy, with the same number of nodes. In our
computations, transformation from Z to X is made. Since radial variations are also
more rapid near the well of a small radius, the radial coordinate is transformed by

=InR/d (11.1)
- J5©® 30 - J5©® 25

s0 that g8 O a LO (Ras2~> L %% (11.2)
R On RoR\" oR) R 617

The_ computational domain is the large but finite rectangle 0 =17, <y <7y,
X, < X < X,, discretized into (N—1) x (M — 1) small rectangles with N—1 uniform
mtervals in 9 and M —1 uniform intervals in X. At each grid point and the nth time
step 8 is denoted by s} with i=1,...,N and j=1,...,M. Suppose that all
quantities are known everywhere at nAT The procedure for advanemg to (n+1) AT
is as follows.

(a) Interior points

For all interior points along the same vertical line we use the Euler forward scheme
to solve the vertical diffusion equation (8.6) and march to the next time step, hence
obtain s"“ for j =2,3,..., M—1. This is repeated NV times for N vertical lines.

(b) Interface points

Step 1. For grid points along the interfaces several iterations are needed to
advance to (n+1) AT, since the boundary condition (7.22) on I, is nonlinear. We first
choose values of e,, k,, G, and ¢ and the nth time step as the ﬁrst trial values %",
%kt %a,)5t and Yot On the lower interface I',, we use central differences to solve
the 2-point boundary value problem in the radlal direction defined by the ordinary
differential equation (6.12) with (6.13) and (6.15). On the upper interface, the radial
diffusion equation (7.22) is solved with (7.23) and (7.24) by Crank—Nicholson scheme.
The first iterates 's?{' and 's}'}} are then found.

Step 2. We then calculate the second iterate 2oj;*! from (9.7) by using the first
iterate in the right-hand side, etc.

Step 3. At the kth iteration of the stress, we recalculate e, according to the two-
coefficient model constitutive law described in §2b. During the initial stage of
pumping, the aquitard undergoes virgin compression; ¢’ is negative (compression)
and increases in magnitude with time. Therefore the larger value for virgin
compression must be taken for . During reduced pumping or recharging ¢’ changes
sign at ¢’ = &, and becomes positive. The small swelling index C; must replace C..
The same €, is used during recompression until ¢’ returns to &;. Further increase in
compression beyond &,, €', must be used again. In this way ef** and *al}' are
obtained. Kozeny’s formula is then used to get “k7**; ¥s?4' and *sj*}; are recalculated
by repeating Step 1. The iteration process is continued until satlsfactory convergence
is achieved in % and 3 at all grid points. The criterion for convergence is set to be

Btlpn+l _ n+1|/|k n+1| < 1078, (11.3)

ij
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The number of iterations required is usually less than 10 for early times (7 < 0.2) and
less than 5 otherwise.

The solution procedure is now complete up to (n+1)th time step, and the same
procedure is repeated for the next time step.

The consistency of the finite difference approximations is kept at O(Ay)?, 0(AX)2,
and O(AT). Several values of ,,, AX and Ay have been tested to ensure convergence.
It is found that by increasing #, beyond 15 with fixed Ay = 0.15, no changes can be
observed in the solution. Keeping 5, = 15, a few different Ay values were used to see
the accuracy of finite difference approximation. For example, the difference in s} , for
Ay = 0.1 was less than 0.1%. In all cases, we use Ay = 0.15351.

The vertical range of computation in X varies with the initial void ratio
distribution &,, which depends on %,. Now the total thickness in X is

5. 15

~ ~ 2 dZ

Xz_X1=f d — (11.4)
B, 1+¢,

according to (5.11), which must be also affected by ;. For example, X,—X, = 0.13
for a soft aquitard with %, = 0.45 and &,(I,) = 8.0. Numerical tests show that
convergence is reached when AX < 0.01. In all cases, X, — X, is divided into 30 equal
intervals.

The scheme is explicit in time and instabilities are possible when A7 is greater than
a certain value depending on AX. The governing equation (8.6) is diffusive in X with
variable diffusion coefficient k,(1+4¢,)2/d,(1+e,) which varies with time. By an
approximate linear stability analysis, A7’ must be such that

7 \2
k(%) AT _ ), (11.5)
a, 1+e, (AX)?

Typically AT = 0.0001 is used for &, < 0.6 and AT = 5 x 10~° for F,, > 0.6.

To check the numerical scheme, a simple problem was chosen with e, = ¢, =
constant, &, = 1 and %, < 1. The resulting problem is linear and can be solved
analytically by Laplace transform, which has been used to confirm our numerical
solution, as was done in Fallou et al. (1991).

12. Numerical results

In our numerical examples all three layers are assumed to be of equal thickness,
hence the normalized depth is unity for all layers (B, = B, = B, = 1), and the two
aquifers have the same hydraulic conduct1v1ty (k = i /15 = 1) and compression
index. The dimensionless well radius & is taken to be @ = 0.05 whose precise value is
important only very near the well. At T = 0, the water table is at the mid-height of
the top aquifer (H—B,—B, = 0.5).

(@) Initial state

The initial state of static equilibrium is a one-dimensional problem governed by
(56.6). By using (2.15) and (2.17), it is reduced to a nonlinear first-order differential
equation for &, which can be numerically integrated for a prescribed €, at the top of
the layer. After e,(7) is calculated k,(Z), &,(Z) and D,(Z) follow from the constitutive

Phil. Trans. R. Soc. Lond. A (1992)
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(@

Ny

Figure 2. Vertical variation of the aquitard void ratio e, at B = 0.5 for various pumping rates:
(@) v = 0.5, (b) v = 1.0, (¢) v = 2.0. The numbers by each curve denote the dimensionless time 7'
—2 0

0
005
50

Figure 3. Depth and time variation of the aquitard drawdown 3 at R = 0.5 for
(@) v = 0.5, (b) v = 1.0, (c) » = 2.0.

©

laws. Details can be found in Fallou e al. (1991) for the same three-layered system.
In this paper the following void ratios are chosen for an exceptionally soft and porous
aquitard typical of Mexico City clay (for which the range of e is from 6 to 10 (Zeevaert
1983; Marsal 1957)):

e () =20, g, =80, gl,) =25 00,=6.0.
The storage coefficient &, is then calculated to be & = 0.45.

(b) Steady pumping
Three different rates of pumping are examined: v = 0.5, 1.0 and 2.0, labelled
respectively in figure 2 by (a), (b) and (c).

(i) Void ratio

The vertical variation of the aquitard void ratio e, at R = 0.5 is plotted in figure
2a—c. As is expected of vertical diffusion (cf. (5.13)), the void ratio perturbation is
first confined to the lower part of the aquitard and spreads in time over the entire
depth. As a result of finite deformation, e, is reduced by a considerable amount from
its initial value €,.

The vertical variations of hydraulic conductivity &, and the coefficient of
compressibility @, at £ = 0.5 are similar to those of e, and are omitted.

(ii) Drawdown

The vertical distribution of the aquitard drawdown at R = 0.5 is shown in figure
3a—c. Note that the magnitude of 3(I',) roughly increases in accordance with the
increment of the pumping rate v. Again the drawdown diffuses upwards from the
lower interface and finally approaches a linear distribution in 7 for large time.

In figure 4, the drawdowns at the soil interfaces I, and I, are shown as functions

Phil. Trans. R. Soc. Lond. A (1992)
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0 1 2

Figure 4. Time variation of the aquitard drawdowns on the interfaces &% (I')) (solid) and 3(I,)
(dashed) at R =0.2: (@) v=0.5, (b) v = 1.0 and (¢) v = 2.0.

Or
5 0.2

-2+t7 o0

@

(©

2

Figure 5. Radial variation of the drawdown in the artesian aquifer:
(@) v=0.5, (b) v=1.0, (c) v =2.0.

of time for R =0.5. These are also the drawdowns in the aquifers because of
continuity. Note that 3 (I,) becomes comparable to the layer thickness as the
pumping rate v increases. For the higher pumping rates v =1.0 and v = 2.0,
computation has to be stopped at T = 1.5 and 1.0 respectively beyond which the
water table sinks below the interface I', into the aquitard (cf. figure 8); the present
formulation must be further modified. Such an extension is not pursued here.

The radial variation of 3 (I",) is shown in figure 5a—c and similarly that of & (I7,)
in figure 6a—c. Obviously, near the well, §(I") varies with & rapidly while 3 (I’,)
varies slowly. Recall that the flow is essentially horizontal in the aquifers and vertical
in the aquitard. This result implies that the large amount of water pumped out of the
artesian aquifer is replenished only to a minor extent by the phreatic aquifer.
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Figure 6. Radial variation of the drawdown in the phreatic aquifer for
(@) v=0.5, (b) v=1.0, (c) v =2.0.

0
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Figure 7. Time variation of normalized ground subsidence at (a) E=0.2 ) E=05,

(¢) R = 1.1 and (d) R = 1.5 for various pumping rates v = 0.5, 1.0, 2.0.

(iii) Ground subsidence

The vertical subsidence is plotted in figure 7a— as a function of time. Because of
the radial diffusion, &} reaches the steady state much sooner near the well. Note from
(9.2) subsidence is caused by the accumulated changes of void ratio throughout the
entire depth of the aquitard. Therefore its transition toward the final value is much
more rapid than the local void ratio near the top of the layer; the latter decreases by
the slow upward diffusion.
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Figure 8. Time variation of the watertable displacement relative to ground surface, RO — b at
R =0.2 for (@) v=10.5, (b) v = 1.0, (c) v = 2.0.

(iv) Water table

Rather than the absolute vertical displacement, it is the vertical displacement of
the water table relative to the current ground surface that is of practical interest. The
latter is also the difference between the initial and the current depths of the water
layer above the moving interface I, ie. A®—b; =& (I,)— b;. By taking the
difference of figures 6 and 7 one can obtain the plot of A —b, against R for a set of
T We show instead in figure 8a—c the time variation of 4® —b} for B = 0.2. It can
be seen that for small R, the depth A — b} increases at first, then decreases for large
T. This is a manifestation of the Mandel-Cryer effect (Mandel 1953; Cryer 1963;
Gibson et al. 1989), known to occur in a related problem of pumping from an infinitely
deep consolidating aquifer (Veruijt 1969). In the present case, deformation occurs
mainly in the aquitard, but the physical mechanism is similar and can be explained
as follows. Near the well and for small time, the effect of pumping in the artesian
aquifer is not immediately felt at the upper interface I', hence §(I',) is relatively
small, see figure 4. However, being affected by the variation of void ratio in the entire
aquitard, the subsidence of the upper interface b, responds to pumping much more
qulckly As a consequence, A —b is positive for small 7' near the well. As time
increases, 8(0)(F ) steadily increases and dominates over b;. This results in a steady
decrease of h© —8} in figure 8. Thus the initial rise of water table near the well is due
to the instantaneous compaction of the aquitard and the slow diffusion of the pore
pressure.

The depth dependence of the effective stress perturbation ¢ differs from that of
59 only by the aquitard settlement on the upper interface, hence need not be plotted.

(v) Total stress perturbation

In figure 9a—c, the depth dependence of the total stress perturbation at B=05is
shown for a set of 7. Departure from uniformity is more noticeable for higher rate
of pumping (and of course also for softer aquitard). Thus the common assumption of
constant total stress is no longer accurate here. The non-uniformity is caused by

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 9. Vertical variation of normalized total stress perturbation 7 at B = 0.5 for
(@) v=0.5, (b) v=1.0, (c) v = 2.0.

[\ [\ @
0 LT

1 _(b) c E
A A N C F
0 - . S —
° 1 ) ©
0 ____________
-05 - - . - - -
! @
7
3

Figure 10. Transient pumping patterns.

aquitard compaction and gravity, represented by the integral term in (9.5). As time
becomes large, compactlon reaches a finite limit ; 7’ becomes relatively uniform with
Z. The total stress is now dominated by 7O (I7,) whlch is proportional to the water
layer thickness in the top aquifer, i.e.

FOL,) = 60y —F' (D) = 60(Fy) — (A —by) = —my(A© —57). (121

(¢) Transient pumping
Four different patterns of pumping, shown in figure 10a—d, are considered with a
view to examining their possible hysteretic effect on subsidence. In the aquitard we
have chosen C, = 6.0 for virgin compression and C;, = 0.2C, = 1.2 for swelling and
recompression. All time histories are shown for B = 0 2 whlch is representative of the
neighbourhood of the well.

(i) Steady against intermittent pumping
We compare here two cases sharing the same average pumping rate as shown in

figure 10 . In the first case Q(T) is cyclic, being a constant Q( ) = 1.0 for the first half
of a cycle 0 < 7' < 0.5 and zero for the second half 0.5 < 7' < 1, etc. The curve of
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:;2(0)

T

Figure 11. Time variations of (a) 52, (b) &5, (c) 7, and (d) b}, (e) A® —b), for R = 0.2. Steady
(solid) and intermittent (dashed), by pumping depicted in figure 10a.

stress against void ratio necessarily branches off from virgin compression to swelling
and recompression, etc. In the second case water is drawn steadily at the average rate
of @(T) = 0.5. The soil undergoes virgin compression monotonically. Time variations
of (), ¢ and 7 at R = 0.2 and three depths X = X,, X = X, = }(X, +X,) and
X, are shown in figure 11 and b. The level X,, is slightly below the initial mid-level
of the aquitard because the initial void ratio distribution is not uniform (see (5.11)
and figure 2a), but is representative of the centre portion of the aquitard. Note that
the changes in both the drawdown and the effective stress recover from large
negative values to nearly zero as soon as pumping stops. The reason that @ is
slightly positive (tension) is associated with the small swelling index (7. As a
consequence the second integral in (9.7), which is positive becomes more dominant
than 8 (I,). Except for the change in total stress all quantities behave drastically
differently in the two cases. In particular, the ground subsidence by cyclic pumping
is considerably greater than that by uniform pumping at all 7' as shown in figure 114.
To lessen subsidence, it is therefore better to pump steadily rather than
intermittently over a long time.

The history of the water table level outside the well region at £ = 0.2 is shown in
figure 11e. Notice again the initial rise in both cases (Mandel-Cryer effect). For large
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Figure 12. The void ratio against effective stress diagram C; = 6.0 at BE=02onT,

T, the water table drops more rapidly and steadily when pumping is steady.
Therefore for maintaining the water table close to the ground surface, intermittent
pumping appears more preferable.

(ii) Cyclically modulated pumping

The pumping rate varies sinusoidally in time according to Q(T) = T+sin T. This
case partly resembles the one-dimensional model for Pixley, California, by Helm
(1975, 1976) and by Narasimhan & Witherspoon (1978), who assumed a surface load
varying similarly in time. Figure 12 shows the computed e, against log;,(— &) curve
at a point B = 0.2 on I',. The letter symbols correspond to peaks and troughs of Q(7')
marked in figure 10b. At the start of pumping ¢ decreases (i.e. compression
increases) and the variation of e, against log,,(—&4”) follows the virgin compression
line O—-A in figure 12. When QT ) decreases, ¢{” increases (swelling) and the curve is
shown by line A-B in figure 12. As @(T) increases from B to A’ in figure 10b, the
corresponding curve in figure 12 follows the recompression line BA”. Upon passing
beyond the point A’, & becomes smaller than that at A” which is the maximum
compression so far experienced by the soil. Therefore the stress state returns to virgin
compression and onto the path A’C which is the extension of OA. For the rest of Q(T)
in figure 105, the stress state follows CD, DC’, C'E, and EF, etc. The time histories
of drawdown, the pumping induced changes in the effective stress and in the total
stress, as well as the ground subsidence are similar to the history of pumping, as
shown in figure 13a—d. Despite the substantial changes of ¢§” over AB, CD, EF in
figure 12, the ground surface rebounds only slightly after each cycle due to the
relatively small change of e, in the swelling-recompression process (see figure 13d).

The water table level at B = 0.2 is presented in figure 13¢, showing an expected
initial rise and eventual fall, with undulations. Except for this Mandel-Cryer effect
which is a three-dimensional phenomenon, these results are qualitatively consistent
with the one-dimensional models of Helm (1976) and of Narasimhan & Witherspoon
(1978).

(iii) Pumping and recharging

Let all the water pumped out during the first phase be reinjected slowly into the
artesian aquifer, as shown in figure 10¢. At the end of T = 3 the net water removal
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Figure 13. Time variations of (a) 3, (b) &, (¢c) 7, (d) b}, (e) A —b}, for R = 0.2 by cyclically
modula,ted pumping depicted in figure 10b.

is zero. As in previous cases, sample time histories of &, {, 7{" at three depths and
R = 0.2 are shown in figure 14. Their pattern is 31m11ar to that of Q(T). Note, in
particular, that 8 (I,) rises rapidly to a , positive value as soon as reinjection starts.

GO (I,) becomes positive (tension) after 7' = 1.5 because of prolonged injection, while
the sum o = ¢{¥ + ¢{” is still compressive, though reduced in magnitude. Using the
same reasoning given for Case (i), it follows from (9.1) that H, — H becomes positive.

Therefore the water table rises above the initial level at Z = H and the thickness of
the dry zone in the phreatic aquifer becomes less than 3. The total stress change
FO(I,) shown in figure 14c becomes negative after T 0.8. This negatlveness
(increased compression) results from the increased buoyancy induced by the rise of
the water table above its initial level A. Thus the combined weight of both the solid
and the fluid above the upper interface is increased from the initial state. As is
obvious in figure 14d, at the end 7' = 3 when all the pumped water is reinjected, the
ground level does not return to the initial position. Combined with the significant
increase of §(I,), this explains why the water table also rises by a large amount for
large time.

(iv) Cyclic pumping and recharging

Water is pumped at the rate @ = 1 during the first half of each cycle and recharged
at the rate @ = —0.2 during the second half. The low rate of recharge is chosen so as
to avoid liquefaction anywhere in the soil in the entire computation, i.e. to keep the
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Figure 14. Time variations of (a) §®, (b) &, (c) #® and (d) b, (¢) A® -5, at B = 0.2 by
pumping and recharging depicted in figure 10c.

sign of & = &+ ¢ negative (compression) throughout the computation so that (2.17)
remains valid.

The aquitard drawdowns at three levels X, X,, = (X, +X,) and X, for R = 0.2 are
shown in figure 15a¢. During the recharging phase of the first cycle, the vertical
distribution of & is reversed and the flow direction in the aquitard becomes upward,
as in Cases (i) and (iii). In the second (1.0 < 7' < 2.0) and third (2.0 < 7' < 3.0) cycles
the same kind of variation of 8{” is repeated. The amplitude of 3 is quite large. In
figure 15b, the effective stress variation is shown for the same settings. During
injections, most part of the vertical cross section is in tension as compared to the
initial state, since & > 0. The vertical settlement is shown in figure 15d. Hysteresis
is obvious after the first pumping period. While ¢ fluctuates greatly, the ground
level recovers only slightly. The water table recovers significantly after each cycle,
as shown in figure 15e.

13. Concluding remarks
When water is pumped into an isolated well in a soil stratum consisting of
alternating sand and clay layers, the pore fluid seeks the path of least resistance by

flowing transversely in the clay layers and longitudinally in the sand layers. On the
other hand soil deformation is primarily one dimensional in the transverse direction
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Figure 15. Time variations of (a) 32, (b) ¢, (c) 7 and (d) b}, (e) A® —b} at R=02 by cyclic
pumping and recharging depicted in figure 10d.

only. These physical features have been recognized before and utilized in existing
papers by well hydrologists and geotechnical engineers. However, combination of the
two have been made in existing work only in an ad hoc manner. In this paper we have
shown by a systematic perturbation analysis that such a combination isindeed correct
with an error of O(&) is subsidence and O(8) in drawdown, where & is the small ratio
of permeabilities, under the stated assumptions. In addition, fluid drawdown and
effective soil stress are in general coupled nonlinearly, and the total stress is no longer
constant in depth. With a constitutive model representing the well-known nonlinear
and hysteretic behaviour of soft soils we have examined the effect of pumping from
an isolated well on the finite displacement of the ground surface and the water table,
as well as the transient evolution of the drawdown in various parts of the soil. Our
results for steady pumping displays Mandel-Cryer effect which has so far been
predicted only for infinitesimal soil strain in well hydraulics and for finite strain in
a simple sphere. Examples for transient pumpings (intermittent or cyclic pumping
and recharging) show that the ground surface and the water table can respond in
interesting manners which are relevant to the planning or operation of wells. In all
examples the common approximation of constant total stress is found to be not quite
accurate.
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Extension of the present theory to allow finite compressibilities in all layers is
straightforward and worthwhile. Since for a single well the physics is already highly
nonlinear, the interaction between two or more adjacent wells or concentrated zones
of pumping, separated by distances comparable to the typical radius of influence,
cannot be treated by superposition, neither is the combined effect of pumping and
surface loading. While the present theory allows large displacement of the water
table within the original phreatic aquifer, modifications are needed to deal with the
more dramatic case where the water table can move across several soil layers. For
these complex problems, further research is worthwhile.

We thank the Solid and Geomechanics Program, U.S. National Science Foundation, for supporting
this research through Grant MSM 8616693.

Appendix A. Linearized Biot’s equations of poroelasticity
The linearized equation of mass conservation for the solid is
—on'fot+V-(1—m)vy) =0, (A1)
while the equilibrium equation is
Vo' = Vp'+(ps—pw) gn'. (A2)
For infinitesimal stress and strain Hooke’s law applies
00’ (x,t)/0t = A(Vu,+ Vo) + (D—2G) V- v, 1, (A 3)

where V[T denotes the transpose of Vv}, and G and D are the shear modulus and
constrained modulus respectively. The time derivative of (A 2) then reads

V00’ /0t = Vop'/ot+ (ps—py,) g On'/0t, (A4)
or, by combining with (A 3)
V(G + (Vo)) +(D—2G) V-0 1] = p, g V3 /3t + (p—p,,) gV [(1=7) ). (A 5)

For an axisymmetric problem let u and w be the radial and vertical velocity
components of the solid phase in the r and z directions. Equation (A 5) may be
written for each layer, as follows,

1 0ruw’ ow'| Of~0u ~ow 0%’
Gr[Dr or +(D—26G) ]+az(G 0z ar) Pwd aror (46)
10 [~0w ~ow] of, ~ ~ 10ru’ ow 0%’
?57[G3{+G ar]J%[(D_zG)? o P az] Srr

o= pu) 1= 14 [~ glpu—po) (1—m '], (AT)
Appendix B. Derivation of (7.21)
The lagrangian equilibrium equations in the phreatic aquifer are
2
W/
Phil. Trans. R. Soc. Lond. A (1992)

Qi

(G+65) = (1—7,) P24 0(9) (B 1)

w


http://rsta.royalsocietypublishing.org/

a
///\ \\
A

'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
'\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

228 C.K. Lee, S.N. Fallow and C. C. Mei
in the dry zone, and
0 ~ ., _ S
7 =5, (C+63) = (1—n3)<£——1>+0(8) (B2)

in the wet zone. We next integrate (B 1) from the instantaneous water table to the
ground surface

o+ 3]r = (1—73) (ps/pw) (B E Ba_ﬁo) (B 3)
and integrate (B 2) from I, to the water table:
G+ Glr, —[Fa+ Glr, = (1=7) (ps/py— 1) (H,— B, — By). (B4)
Adding the preceeding two equations we obtain
—[Fs+Gir, = (1=75) (ps/py) By— (1= 75) (H,— B, = By). (B 5)
Since at 7' =0, 64 = 0 and H = H,, it follows that
—Gy(Iy) = (1=1) (ps/pu) By— (1= 705) (H— B, - B,). (B 6)
Subtracting (B 6) from (B 5) we get
—Gy(Ty) = (1 =) (H—H,), (B7)

which is (7.21), by virtue of stress continuity.

Appendix C. List of symbols

In all subscripted variables the range of ¢ is always 1 = 1,2, 3.

a well radius T,t lagrangian and eulerian time
a, coefficient of soil compressibility U radial component of solid
B, initial depth of ith soil layer velocity of ¢th soil layer
b, instantaneous depth of ith v, v, velocity vectors for solid
soil layer and fluid
C, compression index of clay aquitard  w, vertical component of solid
(04 swelling and recompression velocity of ith soil layer
index of aquitard X reduced vertical coordinate
D, constrained modulus of soil (cf. (5.11))
e void ratio z,y,z eulerian cartesian coordinates
e,,e, unit vectors along the radial and Jii bulk modulus of soil
vertical directions I',  water table

G shear modules of soil
g gravity I, top surface of ¢th layer
H initial height of the ) small parameter (cf. (3.5b))
water table i logarithmic coordinate along
h instantaneous height of r-axis (= InR/a)
the water table K ratio of depth-averaged hydraulic
J jacobian determinant conductivities of
k, hydraulic conductivity of ith aquifers (= k,/k,)
soil layer A Lamé constant
number of grid points v measure of drawdown to layer
along X-axis thickness (= §/6)
N number of grid points along y-axis p density
n, porosity of ith soil layer Ty effective stress tensor
P pore pressure Ty total stress tensor
@(t) pumping rate initial state
R,r lagrangian and eulerian perturbation from initial state

—_~
~— ~—
<

radial coordinate scale of physical variable
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s, drawdown @) dimensionless variable
&y  storage coefficient of aquitard ()*  mth order term in perturbation
(= pygb/Dy) solution (2 =0,1,2...).
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